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ABSTRACT 

In recent years, there has been a resurgence of interest in US Air Force in space access and 

therefore Air Force is interested in the hypersonic aerodynamics of its future space operations 

vehicles, long-range-strike vehicles and military-reusable launch vehicles. Hypersonic flows 

about space vehicles produce flow fields in thermodynamic non-equilibrium with local Knudsen 

numbers Kn - XIL (where X is the mean free path of gas molecules and L is a characteristic 

length) which may lie in all the three regimes - continuum, transition and rarefied. Flows in 

continuum regime can be modeled accurately by the Navier-Stokes (NS) equations; however the 

flows in transition and rarefied regimes require a kinetic approach such as the Direct Simulation 

Monte Carlo (DSMC) method or the solution of the Boltzmann equation. 

The objective of this research project has been to develop a computational methodology and 

a code for computing hypersonic non-equilibrium shock wave flows of multi-component reactive 

gas mixtures of diatomic gases using the Generalized Boltzmann Equation (same as the Wang- 

Chang Uhlenbeck equation which accounts for the degenerate energy levels) at Knudsen 

numbers in transitional and rarefied flow regimes. Several milestones have been achieved: 

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian 

mesh. The solver has been validated by computing the ID shock structure in nitrogen for 

Rotational-Translational (R-T) relaxations and comparing the numerical results with the 

experimental data for Mach numbers up to 15. The solver has been exercised successfully for 

computing the 2D blunt body flows in nitrogen and 3D flow from a rectangular jet of nitrogen in 

vacuum for RT relaxations. The issues of stability of the algorithm and the possibility of 

reducing the number of rotational levels in the computations without compromising the accuracy 

of the solutions have been rigorously addressed. 

2. A computational methodology has been developed to compute the hypersonic shock 

structure in diatomic gases including both the RT and Vibrational-Translational (V-T) 

relaxations. 1-D shock structure in nitrogen has been computed including both R-T and V-T 

relaxations and has been validated by comparing the results with the experimental data. 

3. A computational methodology has been developed to compute the hypersonic shock 

structure in a non-reactive mixture of two diatomic gases.   1-D shock structure has been 



computed in an inert mixture of nitrogen and oxygen for R-T relaxations. To accomplish this, the 

GBE is formulated and solved in "impulse space" instead of velocity space. 

4. A new two-level kinetic model has been developed for computing the RT relaxations in a 

diatomic gas and has been validated by comparing the results with the solutions of complete 

GBE. The model is about twenty times more efficient than the GBE in computing the shock 

structure. It should be noted that the model is different than the BGK model; it accounts for both 

elastic and inelastic collisions. 



1. INTRODUCTION 
In recent years, there has been a resurgence of interest in US Air Force in space access and 

therefore Air Force is interested in the hypersonic aerodynamics of its future space operations 

vehicles, long-range-strike vehicles and military-reusable launch vehicles. Hypersonic flows 

about space vehicles produce flow fields in thermodynamic non-equilibrium with local Knudsen 

numbers Kn - XIL (where A is the mean free path of gas molecules and L is a characteristic 

length) which may lie in all the three regimes- continuum, transition and rarefied. Therefore, 

there is an important need for a single unified Computational Fluid Dynamics (CFD) code that 

can treat all the three flow regimes in thermodynamic non-equilibrium accurately and efficiently. 

Flows in continuum regime can be modeled accurately by the Navier-Stokes (NS) equations; 

however the flows in transition and rarefied regimes require a kinetic approach such as the Direct 

Simulation Monte Carlo (DSMC) method or the solution of the Boltzmann equation. 

One of the critical issues in accurate prediction of non-equilibrium flows is the ability to 

simulate the translational and internal energy mode relaxation of polyatomic (in particular 

diatomic) molecules present in these flows. Relaxation of diatomic molecules in non-equilibrium 

flows is very different from that of monoatomic molecules due to the internal degrees of 

freedom; therefore it is important to study the effect of the internal degrees of freedom upon the 

energy transfer between colliding diatomic molecules. It turns out that the simulation of internal 

energy mode relaxation is fundamentally different in the continuum (NS) and kinetic approaches. 

In the continuum approach, NS equations contain the source terms of reaction probabilities for 

quantifying the thermal and chemical non-equilibrium effects which are typically available from 

experiments for equilibrium conditions that have the translational temperature dependence. For 

flows with Kn ~ 0.01, this approach based on NS equations is very effective in computing 

hypersonic flows with small deviation from translational non-equilibrium [1]. However, at 

higher Kn for flows in transition and rarefied regimes, the kinetic methods based on the 

Boltzmann equation provide more detailed information on the degree of non-equilibrium. 

During the past fifteen years, following Bird [2], DSMC methods have been developed for 

computing non-equilibrium flows of monoatomic and diatomic gases [3-5]. Typically, in most of 

the DSMC solvers, the diatomic molecules are modeled assuming quantized rigid rotors for 

rotational energy levels and anharmonic oscillators for vibrational energy levels. Elastic cross- 
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sections are based on Variable Hard Sphere (VHS) model and inelastic cross-sections 

(Rotational-Translational (R-T) and Vibrational-Translational (V-T)) are based on Borgnakke- 

Larsen model [6] assuming constant or temperature dependent collision numbers ZR. 

Dissociation cross-sections are based on the Weak Vibrational Bias model [7] or its variants. 

However, it has been shown that the non-equilibrium rarefied flows of diatomic gases, in which 

the gas molecules transfer energy among translational, rotational and vibrational degrees of 

freedom, cannot be accurately predicted by using the simple collision models in DSMC methods 

[8]. In recent years, considerable effort has also been devoted toward the development of 

approaches using simplified models of Boltzmann equation (e.g. BGK type models) that include 

the multi-translational temperatures, rotational relaxation, and dissociation kinetics [9,10], which 

have shown some promise. However, these approaches also have limitations, especially in 

prediction of strong shocks encountered in hypersonic non-equilibrium flows. Additionally, the 

transition and rarefied regimes are characterized by the formation of narrow boundary layers 

with sharp variation in flow parameters, the zones with considerable compression of a gas at the 

scale of the molecular mean free path, and the low density stagnation zones. Thus the most 

accurate description of the physics of these flows can be obtained by solving the Boltzmann 

equation for a diatomic gas, namely the Wang-Chang-Uhlenbeck Master Equation [11] or a 

generalized Boltzmann equation for a reactive mixture of gases. 

In solving the Boltzmann equation by a finite-difference method, the principal difficulties 

arise in calculation of the multi-dimensional collision integral; the approximation to the collision 

integral must tend to the actual one as the mesh size in the velocity space tends to zero. In recent 

years, there has been significant progress toward the development of an efficient and accurate 

numerical method for the solution of Boltzmann equation for a monoatomic gas [12-15]. In this 

method, the Boltzmann equation is solved on fixed space and velocity grids by a finite-difference 

method. A projection method (that ensures that the velocities before and after collision belong to 

the same grid of discrete ordinates) is employed for the evaluation of the collision integral that 

ensures exact conservation laws for mass, momentum, and energy as well as zero value of the 

integral under thermodynamic equilibrium (when the distribution function is Maxwellian). The 

last property eliminates the numerical error of computing the principal part of the solution 

outside the Kundsen layers and shock waves and thus considerably increases the accuracy and 



efficiency of the method. The differential part of the Boltzmann equation is approximated by an 

explicit second-order flux-conservative scheme. The combined system of difference equations 

(for the collision integral and the differential part) is solved by the splitting method which splits 

the solution process in two stages: the collision relaxation and free molecular flow. This method 

has been developed by Professor Cheremisin of the Computing Center of the Russian Academy 

of Science [12-15]. It has been extensively applied by him and many other researchers [16] 

including the author of this report [17-21]. The key numerical features of this method are: (a) it is 

fully conservative, (b) it preserves the positiveness of the solution, (c) it does not disturb the 

thermodynamic equilibrium and therefore can be applied for computing flows approaching 

continuum regime, (d) it is essentially deterministic and therefore does not produce statistical 

noise, (e) it employs numerically efficient integration grids that make it very efficient, (f) it can 

employ a variable mesh that may exceed the local mean free path in the regions of low gradients, 

and (g) the method can be easily parallelized. It has several advantages over the DSMC method 

e.g. the DSMC method requires mesh spacing less the mean free path in the entire field, it 

employs not very realistic molecular potentials (like VHS) instead of the more accepted ones like 

the Lennard-Jones potential with established parameters for each gas (e.g. N2 and 02), and for 

inelastic collisions DSMC method employs models that are not physically justifiable. For 

example in the most commonly used Borgnakke-Larson model [6] in the DSMC method, the 

molecules are divided in two parts: the molecules in major part collide elastically and in the rest 

with internal -translational energy transfer that presumes a thermodynamic equilibrium. This 

model is therefore not very accurate. 

The objective of this research project has been to develop a computational methodology and 

a code for computing hypersonic non-equilibrium shock wave flows of multi-component reactive 

gas mixtures of diatomic gases using the Generalized Boltzmann Equation (same as the Wang- 

Chang Uhlenbeck equation which accounts for the degenerate energy levels) at Knudsen 

numbers in transitional and rarefied flow regimes. It should be noted that in the GBE, the internal 

and translational degrees of freedom are considered in the framework of quantum and classical 

mechanics respectively. The general computational methodology for the solution of the GBE is 

similar to that for the classical BE for a monoatomic gas except that the evaluation of the 

collision integral becomes significantly more complex due to the quantization of rotational and 



vibrational energy levels. The transition probabilities, elastic and inelastic cross-sections etc. of a 

gas molecule are needed for the solution of the collision integral. Lennard -Jones potential with 

two free parameters is used to obtain the elastic cross-section of the gas molecules, and the so 

called "combinatory relations" are used to obtain parameters of Lennard-Jones potential for an 

interaction of molecule A with molecule B knowing the parameters of A and B [11]. The 

probability of transition in inelastic collisions is determined using the approach by Beylich [22, 

23]. These inputs allow for the calculation of the Boltzmann Collision Integral in GBE for a 

diatomic gas and a reactive mixture of gases. 

Several milestones have been achieved: 

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian 

mesh. The solver has been validated by computing the ID shock structure in nitrogen for 

Rotational-Translational (R-T) relaxations and comparing the numerical results with the 

experimental data for Mach numbers up to 15. The solver has been exercised successfully for 

computing the 2D blunt body flows in nitrogen and 3D flow from a rectangular jet of nitrogen in 

vacuum for RT relaxations. The issues of stability of the algorithm and the possibility of 

reducing the number of rotational levels in the computations without compromising the accuracy 

of the solutions have been rigorously addressed. 

2. A computational methodology has been developed to compute the hypersonic shock 

structure in diatomic gases including both the RT and Vibrational-Translational (V-T) 

relaxations. 1-D shock structure in nitrogen has been computed including both R-T and V-T 

relaxations and has been validated by comparing the results with experimental data. 

3. A computational methodology has been developed to compute the hypersonic shock 

structure in a non-reactive mixture of two diatomic gases. 1-D shock structure has been 

computed in an inert mixture of nitrogen and oxygen for R-T relaxations. To accomplish this, the 

GBE is formulated and solved in "impulse space" instead of velocity space. 

4. A new two-level kinetic model has been developed for computing the RT relaxations in a 

diatomic gas and has been validated by comparing the results with the solutions of complete 

GBE. The model is about twenty times more efficient than the GBE in computing the shock 

structure. It should be noted that the model is different than the BGK model; it accounts for both 

elastic and inelastic collisions. 



2. TECHNICAL APPROACH 
As mentioned before in Section 1, gas flows in continuum-transition regime, where the 

Knudsen number Kn is 0(1)   [0.1 < AT„ < 10], are characterized by the formation of narrow, 

highly non-equilibrium zones (Knudsen layers) of thickness of the order of molecular free path 

X; the flow structure is then determined by the fast kinetic processes. Moreover, in case of 

unsteady flows, an initial Knudsen time interval is of the order r0 =Alv, where  v  is the 

molecular velocity. Thus, the Knudsen layer can be computed accurately only by directly solving 

the Boltzmann equation. Alternative approaches which approximate the Boltzmann equation to 

account for departure from equilibrium, namely the higher-order continuum equations such as 

the Burnett equations [24, 25], Grad's moment equations [26] or Eu's equations [27] as well the 

particle methods such as DSMC [2-4], have been shown to have limitations. 

2.1 Solution Method for the Classical Boltzmann Equation 
In this section, we briefly describe the finite-difference method that is currently employed 

for solving the classical Boltzmann equation (BE) of classical mechanics for a monatomic gas in 

translational non-equilibrium. In solving the Boltzmann equation by a finite-difference method, 

the principal difficulties arise in calculation of the multi-dimensional collision integral; the 

approximation to the collision integral must tend to the actual one as the mesh size in the 

velocity space tends to zero. In recent years, there has been significant progress toward the 

development of an efficient and accurate numerical method for the solution of Boltzmann 

equation for a monoatomic gas [12-15]. In this method, the Boltzmann equation is solved on 

fixed space and velocity grids by a finite-difference method. A projection method (that ensures 

that the velocities before and after collision belong to the same grid of discrete ordinates) is 

employed for the evaluation of the collision integral that ensures exact conservation laws for 

mass, momentum, and energy as well as zero value of the integral under thermodynamic 

equilibrium (when the distribution function is Maxwellian). The last property eliminates the 

numerical error of computing the principal part of the solution outside the Kundsen layers and 

shock waves and thus considerably increases the accuracy and efficiency of the method. The 

differential part of the Boltzmann equation is approximated by an explicit second-order flux- 

conservative scheme. The combined system of difference equations (for the collision integral and 



differential part) is solved by the splitting method which splits the solution process in two stages: 

the collision relaxation and free molecular flow. The method described below is second-order 

accurate and is quite efficient; it is due to Cheremisin and his colleagues [12-15]. 

Consider a gas of molecules without internal degrees of freedom and seek a solution to 

the 2-D Boltzmann equation: 

^ + ^-tf + tv-^- = I(f,f) = -L(f,f) + G(f,f) (1) 
ot ox oy 

In equation (1), collisions in !(/,/) = v(f)f and G(f,f) have the form 

L{f,f)= \\[f-frg-b-db-ds-d^ andG(/,/) = j j {/ •/, •g-b-db-de-d^ .   (2) 
-oc   0   0 -OC   0   0 

A standard notation is used in equation (2): b and e are the impact parameters of a 

molecular collision; f,fx,f and /J are functions of velocity vectors £,£,,£ and £,' 

respectively. The first two vectors are the pre-collision velocities; the last two are the post- 

collision ones; g = |£-df,|; bm is the upper limit of the impact parameter; and the vector £ has 

the components £x,£, and £. The space of velocity £ is restricted to a domain Q where an N- 

point uniform grid is defined, with grid points £,p and a mesh size vector/? = (h\,h^,^). Equation 

(1) is approximated by a set of N equations for fp as: 

The method used for calculating the collision integrals described in [12, 13] ensures that 

a computation performed to any numerical accuracy is consistent with the conservation laws. If 

*¥p denotes the collision invariant vector, ¥p = (1, ^p,^p), then 

IVrO (4) 
p 

and at any grid point E,p 
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Here, fM p  is the equilibrium Maxwellian distribution function for gas molecules at a grid 

pointy . The last condition substantially improves the accuracy of calculation of the integral Ip 

in those subdomains where the state of the gas is close to the thermodynamic equilibrium [14]. 

System of equations (3) is solved by the method of splitting with respect to physical 

processes [15, 16]. On an interval[tJ ,tJ+i], we consecutively solve the collisionless transport 

equations 

dt   +*"    dx +i'*   dy       ' h      h K) 

and the collisional relaxation equations 

dfp/dt = ifi, /,'=/;•*, (7) 

written for each grid point (the grid-point index is dropped). 

By splitting with respect to spatial variables, system of equations (6) is approximated by 

a second-order accurate (in hx and hr) explicit scheme [28]. The set of nonlinear equation (6) is 

solved by an integral form [15]. For time step r = if+ - i: 

r;x = n + jhdT (8) 

To resolve fast kinetic process, the condition x < to where to is the mean time between 

collisions, should be satisfied. Cheremisin and his colleagues have written a Boltzmann solver 

using the above method. This solver has been extensively validated by computing flows with 

Knudsen numbers ranging from 0.01 to 10 by the author of this report and Professor Cheremisin 

for computing hypersonic flows with translational non-equilibrium [17]. This solver was 

extended for solving the Generalized Boltzmann Equation (GBE) for diatomic gases; the 

methodology is described in Section 2.2. 

2.1.1 The Stability Condition for the Algorithm Described Above in Section 2.1 

The main algorithm of the conservative projection method described above in Section 2.1 

has two parts. First, there is the splitting of the advection equation and second the integration of 

relaxation equation. For the advection equation, when an explicit 1st order method is applied, the 



CFL   condition   defined   by   the   maximum   molecular  velocity   should   be   satisfied,   i.e. 

^maxrcFi Ih <\. For a higher-order explicit method, instead of unity on the right hand side of 

above condition, a number less then 1 (for example 0.5) appears. 

For the solution at the relaxation stage, there are no exactly defined stability parameters. 

However an important role is played by the parameter^ that limits the proportion of rejected 

contributions. It should be sufficiently small. Usually, it should be of the order of E-4 or E-5. For 

strict computation, it should be equal to 0, but then the CPU time becomes very large. In 

practice, the optimal choice of sr depends on a problem. The wrong choice may influence the 

results of the solution, and even lead to the divergence of the solution. When sr is chosen and 

the number of integration (Korobov's) nodes is given, the maximal value of the time step rrat 

the relaxation step can be determined. For the stability of the computations, the time step of the 

algorithm should be chosen as r = mm(zCFL, rr). 

The Boltzmann equation covers gas flows in all regimes: from free molecular, which is 

extremely viscous from the view point of continuum fluid dynamics, to the Euler gas dynamics 

with zero viscosity. The algorithm contains a number of parameters whose values depend on a 

particular problem. These parameters are: the discretization steps in coordinate and velocity 

variables, the time step, and the limits in the velocity space. If these parameters are not chosen 

correctly, the solution may be wrong or diverge, because it doesn't correspond to the physical 

reality. For example, if the gas is very far from the thermodynamic equilibrium, and one takes 

the coordinate step h > A (local mean free path) or the time step is not sufficiently less the mean 

molecular inter-collision time, the algorithm will produce wrong results and may diverge. The 

use of the same parameters for a near continuum flow however may be O.K. The situation is 

analogous to the application of the Euler gas dynamics equations to a viscous low Reynolds 

flow. Therefore the parameters of the algorithm that define the approximation of a particular 

problem should be properly chosen. The same conclusions are true for the algorithm employed 

for the solution of GBE or the Wang-Chang Uhlenbeck equation described in Section 2.2 
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2.2 Solution Method for the Generalized Boltzmann Equationn for a Diatomic 
Gas (Wang-Chang-Uhlenbeck Equation) 
Nonequilibrium processes in a gas with internal degrees of freedom of molecules can be 

studied by using the generalized Boltzmann equation or the Wang-Chang-Uhlenbeck equation, 

where the internal and translational degrees of freedom are considered in the framework of 

quantum and classical mechanics respectively. For small deviations from local thermodynamic 

equilibrium, an asymptotic method developed for this equation yields hydrodynamic equations 

including the effect of the internal degrees of freedom on the viscosity and thermal conduction of 

the gas [11]. The GBE or Wang-Chang-Uhlenbeck equation (WC-UE) for a diatomic gas in 

thermodynamic non-equilibrium can be written in the form: 

T-+ *' T- = £ Ifafi -Wg^dMtj (9) 

In Equation (9), dQ = sin0d6d<p, ft= f(i,^,x,t) is the distribution function, where / is 

the set of quantum numbers determining the internal state of the molecule; £ is the velocity of 

the molecule in the /th state; g = K,~4j{'•> indices i,j and kj correspond to the molecular 

states before and after the collision respectively; and a" is the cross section for the collision 

responsible for this change of the internal states. There is no summation with respect to the 

repeated index i. 

The cross sections for direct and inverse collisions are related as 

gtfig.o.rtdstfj =g-<T;(g\0,<P)d£kdzl do) 

The magnitude g* -|£A -£,| of the velocity after the collision and velocities gk and £/ 

are determined from the laws of conservation. 

S'^J1 r,6=6,-0.5g\and£=&+0.5g*. (11) 
V    ms 

In equation (11), m is the molecular mass; Ae - e, + ek - ei - ef, where ej is the energy of 

the   /th   internal   state   and   £0 = 0.5(£, + ^-).   The   condition   mg2 >4Ae   determines   the 
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admissibility of the transition (/, j) —»(£,/). We set  cr*' =0  for forbidden transitions. The 

probability of the transition (i,j) -> (k,l) is defined as 

a-' 
p"v -3L, where <=£< (12) 

and satisfies the condition 0 < Py < 1 and the normalization condition 

1^=1. (13) 

We assume that cr„ is independent of the internal molecular state and is equal to the 

elastic scattering cross section a{)=crQ(g,0). The introduction of quantities crn and p*j 

obviously transforms equation (9). 

2.2.1 Numerical Solution Procedure for GBE 

The problem of numerically solving the Wang-Chang-Uhlenbeck (WC-U) equation [29] 

reduces to the construction of a method of calculating its right-hand side, the generalized 

collision operator, which can be represented as/, = -Li +Gj, where 

L,=v0l WfjrfgXld^ (14) 
j,k,tva 

and 

G^o^WfJ^gdnd^. (15) 
j.k.ivn 

As in the case of the classical Boltzmann equation (1), an effective numerical method 

must ensure that the collision operator must be (i) conservative and (ii) be equal to zero on the 

equilibrium distribution function. 

Operators Lt and Gi are calculated on the jm xSn lattice, where S0 is the uniform lattice 

in volume V of velocity space and jm is the number of quantum levels. 

Similar to the case of a one-atom gas, we consider the functional 

CO     00 

G(*,/) = ^o Z   W^fjMJdQxi^, (16) 
'    -X-CCO 

Taking functions <!>(£) in the form 
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<D=0.5[dn/d(f -& + d*d{f-tj)\ and (17) 

Q>'=0.5[dnkd(?-{k) + dnld(?-Z,)], (18) 

where dnq  is the Kronecker delta and d(£* - £) is the three-dimensional delta function, we 

obtain 

U<T) = 0(<I>',/,)and (19) 

Gn{?)=Q(VJd- (20) 

Functions (19) and (20) are calculated on the uniform cubic lattice consisting of Nv sites 

Sv={i,j,k,l,tPZj,0,<p}v such that(£)v,(£)v€S0. Let (£)v^and(£,)v-fA.The values 

(^X, and (£,),, for each site of this lattice are calculated by equation (11). The arrangement of 

vectors£,, £., £t, and £, for thevth site of cubic lattice S0 is schematically shown in Fig. 1, 

where the three-dimensional velocity lattice is given as a plane lattice and subscript v is omitted. 

The value £    = L„(£r) calculated in site £* = £r e SQ by equation (19) is determined by the part 

of the cubic sum for/,. = n, av=y andy',, = «, /?,,=/ as 

^^L^A^+^A^A,., (21) 

whereB=
2^V t        Av=fiafjfi(p%)vgvsm0v,        Av=f^fJyfiy(p%)vgvsm0v,       and 

fja = f(i,^a,x,t). In what follows, the subscript v will be omitted where possible. Since 

velocities %k and %, are not in the sites of lattice S0, Gnr is calculated with the replacement of 

equation (18) by projector d>** into pairs of sites £,x, gx+s and <ff , £„_,, which are nearest to 

£,k and £; and are shown in Fig. 13: 

*"(^)=0-r)[Srta(^-^j+ava(^-^)]+/taM+^r-^+j+a^a(^-^)], (22) 

where s = (s, ,s2,s3) is the vector whose components take values 0, -1, and 1 and that determines 

the site that is nearest to %k and shown in Fig. 1. As a result, 

G'n.r = fiZ {[0 -r){dnkdyX + 5^) + K5„,aM+I + an,ay.^)]A}v. (23) 
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The coefficient rv is determined from the laws of conservation for each site of the cubic 

formula, i.e., for each contribution A,  to operators Lny andGnr. The conservation of mass 

follows from the form of <D", and the conservation of momentum follows from the symmetric 

arrangement of lattice sites £,, %XjfS and ^, £„_s with respect to vectors E,k and £,. In terms 

of the notation 

£o=Z<+<,£| = <+<,and£2 *&, , m$l . +• (24) 
2 2 2 2 2 2 

the law of energy conservation, when contribution A, is split, has the form E0-(l- r)El + rE^ 

Figure 1: Schematic of an Inelastic Collision 

E —E 
Thereforer = — 1~,  which  satisfies  the  condition   0<r<l   because  either   E,<En<E, 

E2-Ei 102 

or E2<E0<Et. It is important that rr is independent of A,. For this reason, additional lattice 

sites £,K , £y/ , S,xi+V) , and ^/; s and coefficient rv can be preliminarily determined for each 

site of cubic lattice Sv, and then extended lattice S\ can be used repeatedly, e.g., in various sites 

of physical space. Each contribution A,, can be treated as the result of a "collision" transferring 

molecules from sites/, j to sites A, n andA + s, ju-s. In order to ensure that condition (ii) 

above is satisfied, we consider a pair of inverse collisions to sites i, j from sites A , fi and A + s, 



//-s   with weights   (1-r*)   andr*, respectively. The probability   p„   is determined from 

equation (10), and coefficient r* from the condition 

£1A
(,)(l-O + £1A

(2, = £0[A
(1,(l-r*) + A(2V], (25) 

where 

A(1) = /M^gsin(0)and (26) 

A(2)=/M+^_J#gsin(0). (27) 

A"V 
As a result, r' - —— — . (28) 

A(1V + A(2)(l-r) V 

An analysis similar to the above gives the contribution of inverse collisions in the form 
L'n, = B^{(\-r')(8nkdrA ^ff)A

,"+r(a„tax,+J+a„,^JA,2,}l,, and (29) 
V 

G„>fiI{(5„,5^^)[(l-r•)A,l, + r•A,2|]}, (30) 

Finally, the collision operators are determined as 

Kr = \<£„+ + C), Gn, = \{Gn,x + G'nJ). (31) 

For any arbitrarily lattice of integration sites Sy, condition (ii) is satisfied to within an 

accuracy no worse thanO(h), where h is the step of latticeS0. For degenerate levels of internal 

energy, equation (9) must be modified so as to reduce the number of substantial levels. 

Let jm  levels be separated into Jm groups of degenerate levels,J = 0,1,...,JM, with 

degeneration   degree   qr   We   determine   the   distribution   function   asF/. = V / =<7,/ , 

whereq eJ . Substituting o.j =cr0p
k

i' into equation (9), summing this equation over the groups 

of levels/, j, k, and / forming degenerate levels I,J,K and I, and returning to the old notation, 

we arrive at the equation 

lir+t'ir^ IJIdMjfifi -M,f,fj)gpSdad4j (32) 
at ax        n J.kJ-oo n 

for  which   equations   (21),   (23),   (29)   and  (30)  are   valid  with   the   change   A—>qkqtlS., 

A(l) -> qkq,tiX), and A21 -> qkq,Am. 
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2.2.2 Modeling of Transition Probabilities, Elastic & Inelastic Cross-Sections 

The computation of collision integral in equation (9) requires the knowledge of the 

collision cross-section cr*' responsible for the change of internal states of the molecules. This 

cross-section can be calculated from equation (12) if the probability of transition (/, j) —»(£,/), 

Py and the elastic scattering cross-section cr are known for a given gas or a mixture of gases. 

For DSMC simulations of real gases, Koura [7] has given models of elastic cross-section, 

rotationally and vibrationally inelastic cross-sections, and dissociation and recombination cross- 

sections. These cross-sections can be used for shock wave simulations in Nitrogen, Oxygen, and 

in a mixture of Oxygen and Nitrogen. In the simulations, one may use these models (or similar 

models used in DSMC simulations [4]) as well as other models, which have proven to be more 

accurate. It has been recently shown by Beylich [30] that Lennard-Jones (LJ) model gives better 

prediction for the structure of normal shock waves in Helium and Argon than Hard-Sphere (HS) 

model because the scattering behavior of LJ is very different from the HS model. In our 

calculations, we employ the LJ model [11] for calculating the elastic cross-section of diatomic 

gases e.g. Nitrogen, Oxygen, and a mixture of Nitrogen and Oxygen. For calculating the 

rotationally inelastic cross-sections, we employ the transition probability model due to Beylich 

[22, 23] based on an interlaced system of rigid rotors which has shown excellent results for 

shock wave structure in Nitrogen. The model gives the transition probabilities as follows: 

/f =/>*'[«oexp(-A1-A2-A,-A4) + — exp(-A3 - A4)], 
a0 

where A, =| Ae, + Ae2 \/elr0,  A2 = 2 | Ae2 - Ae, | / em, 

A, = 41 Ae, | /(elr0 + eH), A4 = 41 Ae2 | /(e,0 + erj), (33) 

and     of = qkq, Hqfij), e,r0 =mg2/4, em = elr0 + ert + erj. 

In equation (33), qi is the degeneration, and et is the rotational energy of the ;'-th level. This 

model can be easily extended to Oxygen. For calculating the vibrationally inelastic cross- 

sections, we employ the transition probability model described in Reference [7]. 
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2.2.3 Computation of Shock Structure in a Diatomic Gas 

These computations were performed for validation of the Generalized Boltzmann Solver. 

In particular, both the computations with other methods such as DSMC and BGK-type models 

[9] as well as experimental data [31, 32] are available for shock structure in Nitrogen for both 

weak and strong shocks. The calculation of the shock structure using equation (9) requires the 

calculation of relaxation of vibrational levels and rotational levels. The energy of j th vibrational 

level is given by e) =ha> 

Tv is given by 

nj = nZv exp 

'4 and the equilibrium distribution for the vibrational temperature 

(34) 

hco 
where Zv is the vibrational partition function. For Nitrogen,— = 3340A^ and for Oxygen it is 

k 

2230 K, where k is the Boltzmann's constant.   The energy level with the rotational quantum 

»vc/+i) number j has the degeneracy of degree qt =2y' + l and energy e^ = — 
2/ 

, where /   is the 

moment of inertia of the molecule. The equilibrium distribution of the gas density n over levels 

for temperature Tr is given by the expression 

h2jU+\) «;=«Z;'(2y + l)exp 
21.T. 

The rotational constant for Nitrogen 
tr 

2/7 

(35) 

2.9K and for Oxygen it is 2.1 K.   The values of 

ft ft* 
— and —— for a nitrogen and oxygen molecule have been obtained from [33]. From the 

values of vibrational and rotational constant for nitrogen and oxygen, it is obvious that the 

vibration levels are excited at high temperatures, but the rotational levels are excited at any 

temperature. Therefore in most of the cases, only a few vibration levels can be considered. At 

room temperature for Nitrogen, about 20 rotational levels are sufficient for calculations, and at 

least 25 levels are needed for Oxygen. When the temperature rises, the needed number of levels 
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increases. For shock wave in Nitrogen at Mach 2 to 11, about 30 to 60 levels may be needed. 

Although the computational difficulty in number of arithmetic operations increases more 

than J2 times, fortunately, for a large number of levels one can consider the spectrum as 

continuous and use the reduced number of efficient levels. Such is the approach applied in 

statistical physics where the statistical sum is replaced by an integral. When a reduced number of 

levels are used, one can consider the rotational levels in GBE or WC-UE in the framework of 

classical mechanics. In fact, Beylich [22, 23] has successfully employed this approach; he 

computed the probability of R-T transfer for continuous spectrum, and then made it discrete 

using the notion of a rotational quantum. One could do the same, but with an arbitrary 

"quantum". 

The SW structure is formed as a final stage of the evolution of a discontinuity in the initial 

distribution   function.  The  problem  is  considered  for the  interval   -L, <x<L2   with  the 

discontinuity atx = 0. The initial distribution function on both sides of the discontinuity is 

described by the velocities and spectral levels. It has the form 

,|.2rf/2 r    W(g-MK2)2    2/ + 1 

2TK2 O   ^^   T]-2 f!-2(^x) = n^[ml{2nr-2)T2exp[ y\        ' ]-— exp(--^-), (36) 

where Qr denotes the statistical sum. Parameters («,7\w)''2 are defined by the Rankine- 

Hugoniot relations with y = 7/5. At the boundary, the initial distribution function is kept 

constant. The characteristic dimensional parameters needed in the computation are the gas 

density n, the initial translational temperature T0, and the mean-free-path time r at this 

temperature. The initial distribution function at t =0 can be taken as Maxwellian with 

translational velocities. Lattices S0 and Sv with about 5000 and 0.5 x 106 sites respectively are 

sufficient. Time integration is performed according to the scheme in [12, 14] using an 

appropriate time step, e.g. At = 0.005r based on the calculations performed in [17]. In Section 3, 

the results of computations for SW structure in nitrogen at high Mach numbers are presented for 

R-T relaxations, for both R-T and V-T relaxations, and for an inert mixture of two diatomic 

gases. 
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2.2.4    The Choice of Efficient Rotational Levels 

For real  gases, except for some  light ones  like  Hydrogen, the rotational  energy 

quantum^, is very small compared to the thermal energy (at the usual conditions when the gas 

temperature is not close to the absolute 0 K). For example, for Nitrogen one has£,.„, Ik - 2.9K , 

and for Oxygeneml Ik = 2AK . Let the characteristic gas temperature beT^. We then define the 

non- dimensional parameter^ = em IkTa. When % « 1 the spectrum contains a large number of 

levels and is dense. It can be considered as a "near continuous" spectrum. Because it may be 

difficult in some cases to compute the real spectrum with all the levels, an approximate approach 

can be employed without loss of accuracy. It is not a strict approximation, but rather a 

reasonable model of the spectrum. One considers the spectrum as continuous and applies some 

step of the discretization e*ml preserving the degeneration rules. From physical consideration, one 

should preserve the condition %* = em I kTmm « 1, or at least x* < 1 • This condition signifies that 

the energy threshold for the excitation of the rotations everywhere in the flow remains 

sufficiently small, as it is for the real spectrum. One may therefore suppose that better 

approximation is obtained with small j*, but larger value of x* leads to a fewer number of the 

efficient levels and may save the computational effort. According to our test computations of the 

SW problem for a wide range of Mach numbers from M= 2 to 25, the choice/*< 0.25 gives 

quite satisfactory results. Additionally, it can be noted from equation (33) that for Nitrogen the 

probabilities of transitions from the levels i,j to the levels kj don't explicitly contain the 

value of the rotational quantum. This gives an additional support for the proposed reduction in 

the rotational levels. 

2.3 Solution of Classical / Generalized Boltzmann Equation for a Mixture of 
Monoatomic / Diatomic Gases 
For solving the classical Boltzmann equation for a mixture of monoatomic gases or the 

Generalized Boltzmann equation for a mixture of diatomic gases, these equations are formulated 

in impulse space. These formulations are described below. It should be noted that these 

formulations and solution methodology are completely new and have been developed for the first 

time by us for 3D Generalized Boltzmann equation. Some previous work for an inert binary 
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mixture of monoatomic gases for the solution of ID classical Boltzmann equation with 

cylindrical symmetry in velocity space has been reported by Raines [34]. 

2.3.1 Mixture of Monoatomic Gases 

The system of Boltzmann kinetic equations for a mixture of monoatomic gases containing 

K components is usually written in the form 

df        df 
-4.+5-A-/,, i = l,...,K (37) 
dt        dx 

The collision integrals have the form 

A=Z  )   1   ](f;f;-f,fJ)gbO>di>d§J,i = l,...,KJ = lt...,K (38) 
j       -ou      0       0 

Here bm is the maximum interaction distance and the following abbreviations have been used: 

fi=ft(4t> M). fj = fj(4j.x>0. ft-fi(4'i»*.')./,' - fjit]»x.O. where g =l £ - ^ 1, 6 andpbeing 

the impact parameters of the binary collision. The six components of the post collision velocities 

vectors £ and £ are defined by the three scalar conservation laws for the impulse, the energy 

conservation law, and by the two impact parameters. For construction of the conservative 

method of evaluation of the collision integrals for a gas mixture one needs to transform the 

equations from velocity variables to the impulse variables defined as p, = m.^i, mi being the 

molecular mass. Thus, 

(£,x,o->(p„x,o, y; (<f,,x,o->./;* (P„X,O. (39) 

From the condition of normalization on the particle density nj of a specie 

\fjdE, = \f*dp = ni, one obtains 

fXf, (40) 

In new impulse variables, the system of Boltzmann equations takes the form 

df'     p  df 
^ + -^— = 7,, i = \,...,K (41) 
dt     m. dx 

The collision integrals take the form 

7<*=£   J   J   ] (f'f''-f'fJ)s'bdbd<pdpi,g'=\pj/ml-pi/mi\ (42) 
J       -oc     0      0 
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Note that in the subsequent equations, asterisks in equations (41) and (42) will be omitted. The 

integrals will be computed on a limited Cartesian impulse space Q. 

The system (41) is solved on a uniform 3-dimensional grid p^with  N0  points in impulse 

space Q. For brevity, the values of the collision integrals and distribution functions in the grid 

nodes are marked as /    and fa y. The system (41) of A" equations is transformed in the system of 

N0K equations 

df      p    df 

8t      mi   dx 

For evaluation of the integrals (42), one builds the 8-dimensional uniform integration grid 

— = 4i •><?} 'bv'tPv in impulse spacesQxQx2nxbm with Nv nodes in such a way that impulse 

nodes pa v and pp,, belong to the gridpr. The integration grid nodes for which the post-collision 

impulses p',,, or pV,, fall outside Q are excluded. 

Consider a mixture component /rat the grid node/. Introduce a combination of Dirac S- 

functions and Kroneker symbolsSn,, withSnl =\,if n = l, andSn, = 0,//n*l. 

<P„.r=S„AP, -P,,) + ^,/(P, -PjJ-SnJS(p\-pir) + SttJS^rpJr) (44) 

The collision operator for the n -th component at the node y can be written in the form 

!,r =^ZZ   J  1   \hAflfrfi fj ">S bdbd<pdpidpj (45) 
'     /    no    o 

The integral is evaluated as a sum at the gridE!. 

The conservative projection method for evaluation of (45) consists of replacing the two last S - 

functions in (44) by decompositions with a splitting coefficient rv < 1 that has to be defined from 

the energy conservation law. For each contribution to the integral sum, omitting the sub-index v, 

one makes the decomposition 

Stii ~P,r) = Q~r )S(pu -p,r) + rS(pu+S -p,y) 

S(Pj ~Pj,r) = 0-r )S(p^ -pUy) + rS(phfl , -pJr) (46) 
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In (46) the grid nodes piA and p;/jare the nearest ones to the post collision vectors p,and 

p; correspondingly, whenp//Uv,   pifl_sare some complimentary nearly  located grid nodes. 

Hence, the contributions to the collision integral in two near grid points are replaced by the 

weighted contributions in two pairs of the closest nodes. 

The necessary condition to make this decomposition conservative is the fulfillment of the 

impulse conservation law. The transformation of the kinetic equation to the impulse space and 

the application of the uniform grid in Q provide this condition. 

Let p,and pybe the impulses before collision, andpV, p' are the post collision impulses. We 

select the initial impulses at the grid nodes, therefore they can be presented as  p; =k,/? 

andp; = k2h, where k, and k2 are integer vectors and h is the mesh of the impulse space. 

The impulse conservation law gives 

Pi+Pj=P\ + Pj (47) 

Let the grid node nearest to p', be p  = k3h and that nearest to p';.bep .   Letp^ = p'-Ah. 

From (47) one gets p'; = (k, + k, - k, )h - Ah, therefore p^ = p; + Ah and one gets 

P^P^P.i+P^ (48) 

In a similar way, if the nodes p^ andp/7_v are properly chosen, one can prove the equality 

P,+P,=P; ,+P,,, (49) 

From (48) and (49) it results that the decomposition (46) preserves the impulse conservation law. 

The decomposition coefficient r can be defined from the energy conservation law. 

Let the v -th energy contribution to the nodes p; and p   be 

-Eo = \-(^ + ^-), (50) 

2xV2 

where A„ = f. f^h , V being the volume of the Q. space. Then the contribution to the 
4NVN0      ' 

nodes p^, p^ is 
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£,=Av,-(^ + ^), (51) 
2mi    2m) 

and the contribution to the nodes pA+t, p^_5 is 

2 2 

E2=A„.(^a. + |^) (52) 

One should select the nodespi+v, p^in such a way that the value E0 lies between E^andEj. 

The coefficient rrcan be defined from the energy conservation \swE0 =(!-/•„)£, +rvE2 that 

gives 

r„=^§-,0<r„<l. (53) 
^2  ~^1 

We have demonstrated that the transformation of the variables in the system of the Boltzmann 

kinetic equations from velocity space to the impulse space makes it possible to build the 

conservative projection method for the evaluation of the collision integrals. 

2.3.2 Mixture of Diatomic Gases 

The extension of the method described in section 3.3.1 to a mixture of diatomic gases described 

by a system of Wang Chang-Uhlenbeck equations (WC-UE) or generalized Boltzmann equations 

(GBE) can be done in an analogous manner. The GBE for a single component gas can be written 

in the velocity space as 

% + & |f = I J J ]v,fi"$ ~ f.f,)Zgg+bdbdfdS, (54) 
at ox    PxS ^ 0 0 

Here indices a,fi,z,Smark the energy levels,^ =(qxq(i)l{.qa<lp), qa^ the degeneration of 

the energy level   a,P*p'\s the probability of transition from levels  or,/?to the levels^, 

Sap -\^a~^o\- ^0T rotational levels one has qa = 2a +1 in most cases. For vibrational levels, the 

degeneration is absent ar\dqa=\. We assume that the degenerations are the same for all 

components of the mixture. 

The generalization of (54) to the mixture of gases is quite evident: 

% + IM % = Z   Z  J j Vf,J,s< - f,af,fi )KS^dbd9d^)p (55) 
0t ox i     PxS -oo 0  0 
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To build the conservative method of evaluation of the collision operator on the right hand side of 

(55), the equation is transformed to the impulse space in a similar way as in the case of the 

mixture of mono atomic gases. One gets 

2**„ 

at m, ox i PxS.. o o 

The important feature of inelastic collisions is that the impulse conservation law holds in the 

same form as given in equation (47) for the elastic collisions. As a consequence, the similar 

decomposition of the additions in the collision operator can be made with the single difference 

that the formulae (50-52) contain the energy AE transferred between the translational and 

internal degrees of freedom. One can exclude this value from consideration by choosing E0 as 

the kinetic energy after the collision 

£0=V(f^+f^) (57) 

The formula (53) for the splitting coefficient rv remains the same. 

2.3.3 Special Case: Solution Methodology for a Binary Mixture of Diatomic Gases 

In this section, we describe the solution method for a binary mixture of two diatomic gases 

as a special case of general methodology described in section 2.3.2. This methodology has been 

successfully coded to compute the hypersonic shock structure in an inert mixture of two gases as 

shown in Figure 11. It should be noted that it is applicable to a reactive mixture as well. We 

denote the distribution functions for the mixture components as/°(p,x,f), where upper index 

a marks the specie, and index/ marks the internal energy level. The generalized Boltzmann 

kinetic equations for the two components of the mixture can be written as: 

yfi   ,   P yli  _ D<i.i> , D(I,2) 

(58) 

dt    m{ dx 

Off    ,    P   dfi2  _ n(2.2)   ,   D(2.1) 
dt     m2 dx 

• = R^ + R- 

where the collision operators are given by: 
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oo 2n bm 

jkl -ocO   0 

*'2'2)=I 11 \uifl4l-ftfl)***i******* 
jkl -oo 0   0 

jkl _oc o   0 

jkl -a, 0   0 

These equations have been written in the impulse spacep = (px,pv,pz) in order to apply the 

conservative projection method described in section 2.3.2. The molecular masses should be 

normalized by some characteristic mass, for examplem0 = 2m,m2 /(m, +m2), or simply m0 = w,. 

For masses close in values, the choice between two methods of normalizations is not important. 

We consider two main cases: 

Case I: The characteristic length of the flow is not large enough for the vibration levels to he 

excited. 

In this case the vibration levels are frozen and one may consider only the energy transfer 

between    translational    and    rotational    levels    (RT    transfer).    The    collision    operators 

^(i.D ^(2.2) ^(i,2) ^(2.n jnc|u(je onjy pUre]y elastic collisions and those with RT energy transfer. 

For most gases, including Nitrogen and Oxygen, because of small value of the rotational energy 

quantum all the collisions are not elastic. The characteristic time of the RT process is 4 to 5 times 

larger than that for the elastic relaxation toward the local thermodynamic equilibrium. The main 

problem consists in evaluation of collision operators/?'1,1),/?'2,2),/?f1-2>,/?,u,1). When this is done, 

the solution of the system (58) can be obtained by the application of the usual splitting procedure 

described in section 3.1 at a time step r : 
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Step (a) 

^L + JL^L = 0 (59a) 
dt     7w,  dx 

dt     m2  dx 

Step (b) 

<£_ = »(.,!) +/?(.,2) (5%) 
a/    ' 

ffi    _ D<2-2> 4.^<2-" 

At the second step the collision operators are evaluated with the functions marked by (*). It is 

natural to apply at this step a sub-splitting in the form 

^- = /?<U) (60a) 
dt 

¥L = R^ , (60b) 
dt 

and a similar procedure for the second equation of (59b). Here in (60a) the collision operator is 

computed by the distribution function /'and in (60b) by the distribution function/]1". 

A simple symmetric modification wherein the equation (60a) is solved atr/2, then (60b) is 

solved at r , and finally (60a) is solved at r / 2 can be applied for to increase the accuracy. 

Case2: The characteristic length of the flow is so large that the vibration levels are also excited. 

In this case one should take into account the huge difference in characteristic relaxation times for 

RT and VT processes. Let rvjh = srn)l, and  Qvjh denote the VT collision operator. Then the 

inelastic parts of the corresponding collision operators can be estimated asQvjh =sRml,s«\, 

where the indices on the components and the energy levels have been omitted. The kinetic 

equations then take the form (vibration level is marked by the index a ) 

at      m]   dx 
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VJi.a   ,    P   VJi.a  _  n(2.2)   ,   n(2.l)   ,   W2.2)   ,   W2.1) 

dt     mx  dx 
= RU.D+Ri2,)       QUM       QUM (6,b) 

In principle, all the collision operators can be evaluated as the GBE operators, but this task is 

enormously difficult because the total number of levels now is equal to/max •amm, where the 

index indicates the numbers of the rotational and vibration levels. To make the problem solvable 

for a mixture one may apply the two-level model approach for the RT collision operators 

described below (without loss of accuracy), while the operators of VT exchange being evaluated 

in the complete GBE form. In this case the total number of the energy levels will be only two 

times the number of vibration levels thereby significantly reducing the computational effort. 

2. 4 Two Levels Kinetic Model for R-T Relaxation in a Diatomic Gas 
The proposed model equation is aimed at simplifying the simulation of the rotational- 

translational (RT) energy exchange in a gas. Such simplification is highly needed for complex 

processes in which rotational excitation is accompanied by the vibration - translational (VT) 

energy transfer. The model consists of 2 levels: the ground level with the rotational energy f, = 0 

and the excited level with some energy e2 > Tmm , where Tmm is the maximum temperature in the 

problem under consideration. We call the proposed model as "2LRT" model. The distribution 

function is also composed of two parts, ft and f2 with corresponding populations of the levels 

being ^andw,. The gas density is n-nx +n2 and the rotational energy isErol = e2n2. Let the 

density of the gas at some point ben , the kinetic energy Ekin , and the rotational energy Emt. One 

can then determine the populations of the levels by the simple formulas n2 = Eml I e2 

andw, =n-n2. Maximal value of Eml is given byEml =«7,
max, thereforen2 <nTmax/s2, and one 

obtains 0<n2<n and«,>0. Having Ekm, one can determine the equilibrium 

temperature 7^ =2(Ekjn +Eml)/5n, and the equilibrium rotational 

populations^ <nTeq Ie2, nheq=n-n2eq. These parameters determine the equilibrium 

distribution functions /[ M and/2 M . 
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For construction of the model equation we begin with the Wang Chang-Uhlenbeck 

equation (WC-UE) for the considered 2 levels system({/', j,k] =1,2). 

dfi/dt = Y,lp-;'i(fJ,-f,fi)g,i
bdbd(p^l (62) 

In equation (62), we replace the collision operator by an elastic collision operator Qel and the 

non-elastic operator^. This replacement can not be strictly justified, as it is assumed in [35], 

because for RT exchange the purely elastic collisions present an exception, and about all the 

collisions are accompanied with the transfer of relatively small part of kinetic energy to/from the 

rotational energy. On the other hand, because of small inelasticity of interactions the main 

collision relaxation process is close to the case of elastic collisions, except that one should take 

into account the inelastic transfer of the energy. 

The elastic operator is the same as the Boltzmann collision integral for a two-component 

gas mixture: 

Que, =ZJ (f,'f\-fji)g,,bdbd(pd^j (63) 
j 

The non-elastic operator is taken in a relaxation form: 

QrJ=-Vr(f,-fiU) (64) 

It was found by a number of numerical experiments that the choice for f*M in equation (64) as 

the Maxwellian distribution functions flM is possible, but is not the best. The function f*M 

represents the elliptic distribution defined by the diagonal elements of the temperature tensor 

KM = ^(^(W)^ exp(-Wc; IlkTl -mc]12kt„ -mc\/2*0, (65) 

where cv = £ -u,cv = £, -v,c2 =4Z 
_vv' an<^ M>v»w are the components of the bulk velocity 

vector. The components T*m of the temperature tensor are defined by self-similar transformation 

of the initial components 

T>Taa(Teil/TkJ (66) 

The use of the function given in equation (65), instead of the Maxwellian, means that the 

inelastic operator g. preserves to some extent the shape of the distribution function in the 
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velocity space. The RT relaxation frequency can be defined as a part of the relaxation 

frequency v of the BGK. model equation 

v, = a,v (67) 

The non-elastic operator contributes to the evolution of the velocity distribution function toward 

the equilibrium state. To take into account its influence one should diminish the elastic collision 

operator by a factor(\-a2vr), 0<a2 <1. Finally, the proposed R-T relaxation model contains 

two operators, the inelastic operator given by equation (64) with the frequency given by the 

equation (67), and the elastic operatorQ'el =(\-a2vr)Qid . The coefficients  a, and a,   can be 

determined from comparisons of the solutions of the proposed model with solutions of the WC-U 

equation. This model has been successfully applied to compute the hypersonic shock structure in 

Nitrogen with RT energy transfer as shown in Figures 12 and 13. There is good agreement 

between the results of two levels RT model and those obtained with solution of complete GBE. 
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3. RESULTS 
Several milestones have been achieved which are described below. The details are given in 

References [18-21]. In what follows, some key computational results are presented. 

1. A 3D Generalized Boltzmann Equation (GBE) solver has been developed for a Cartesian 

mesh. The solver has been validated by computing the ID shock structure in nitrogen for 

Rotational-Translational (R-T) relaxations and comparing the numerical results with the 

experimental data for Mach numbers up to 15. Figure 2 shows the comparison of computed 

solution with the experimental data of Alsemeyer [31] for shock structure in nitrogen at Mach 

10; excellent agreement is obtained [19]. Figures 3, 4 and 5 show the details of the computed 

solutions for shock structure at M =15 [19]. Figure 3 shows the variation in flow properties over 

the shock thickness, Figure 4 shows the rotational spectrum i.e. the variation in population 

density of various rotational energy levels at different locations in the shock wave, and Figure 5 

shows the variation in rotational spectral populations in the shock region and upstream and 

downstream of the shock. Figures 4 and 5 are very instructive in providing the information as to 

which rotational energy levels contribute most to the shock structure. The solver has been 

exercised successfully for computing the 2D blunt body flows in nitrogen up to Mach 7 and for 

Knudsen numbers ranging from 0.01 to 10 [20]. Figure 6 shows the flow field contours for 

density and rotational temperature at Kn = 0.1 when the flow is in transitional regime. Figures 7 

and 8 show the flow properties along the stagnation line. These results are in good agreement 

with the DSMC calculations performed by Dr. Bondar in Professor Ivanov's group in 

Novosibirsk, Russia using the "SMILE" code. The solver has also been exercised successfully 

for computing 3D flow from a rectangular jet of nitrogen exiting in vacuum for RT relaxations. 

Figures 9(a) - 9(c) show density, temperature and rotational temperature contours respectively in 

z = 0 plane, and Figure 9(d) shows the variation in density, temperature and rotational 

temperature along the centerline of the 3D rectangular jet of nitrogen exiting in vacuum. The 

issues of stability of the algorithm and the possibility of reducing the number of rotational levels 

in the computations without compromising the accuracy of the solutions have also been 

rigorously addressed. 
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Figure 2: Shock Wave Structure in Nitrogen for 
M=10; n = computed density, n,experimental 
density, T = total temp, Txx = translational temp, 
Trot = rotational temp (normalized) 

Figure 4: Rotational Spectrum in SW in 
Nitrogen at M =15 

Figure 3: Shock Wave Structure in Nitrogen for 
M =15, n = computed density, T = total temp, 
Txx = Translational temp, Trot = rotational 
temp (normalized) 
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Figure 5: Variation of Spectral Population in 
SW in Nitrogen at M=15 
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Figure 6: Rotational Temperature Contours for Flow Past a Blunt Body; M = 7 
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Figure 7: Density along the Stagnation Line for Flow Past a Blunt Body, M = 7 
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Figure 8: Rotational Temperature along the Stagnation Line for Flow Past a Blunt Body, M =7 
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(a) Density Contours in plane z = 0 (b) Temperature Contours in plane z =0 
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(c) Rotational Temperature Contours in z = 0 (d) Variation in Properties along the Jet Centerline 

Figure 9: 3D Supersonic Flow of a Rectangular N2 Jet in Vacuum, M =2, To = 200K, dy = 2k, dz = 8k 

2. A computational methodology has been developed to compute the hypersonic shock 

structure in diatomic gases including both the RT and Vibrational-Translational (V-T) 

relaxations [18]. 1-D shock structure in nitrogen has been computed including both R-T and V-T 

relaxations and has been validated by comparing the results with experimental data. The V-T 

methodology is currently being extended to 3D in the 3D Boltzmann solver described in the item 

1 above. Figure 10 shows the variation in flow properties across the shock at M =6 and M =10. 

TvQ) 

Trot 

m 

(a)M=6 (b)M=10 

Figure 10: SW in Nitrogen including both R-T and V-T Relaxations 
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3. A computational methodology has been developed to compute the hypersonic shock structure 

in a non-reactive mixture of two diatomic gases. 1-D shock structure has been computed in an inert 

mixture of two gases with R-T relaxations. To accomplish this, the GBE is formulated and solved in 

"impulse space" instead of velocity space. Figure 11 shows the shock structure in a binary mixture 

of two gases of mass ratio nVmi = 2, and the ratio of molecular diameters d2/di=1.5. It should be 

noted that it is easier to compute the shock structure in an inert mixture of oxygen and nitrogen 

because the mass ratio is 1.143 and molecular diameter ratio is 1.0. The code can be easily applied to 

a mixture containing an arbitrary number of species. 

(a) M =2 (b) M =5 

Figure 11: SW in an Inert Mixture of Two Diatomic Gases 

4. A new two-level kinetic model has been developed for computing the RT relaxations in a 

diatomic gas and has been validated by comparing the results with the solutions of complete 

GBE [18].The model is about twenty times more efficient than the GBE in computing the shock 

structure. It should be noted that the model is different than the BGK model; it accounts for both 

elastic and inelastic collisions. Figures 12 and 13 show the comparisons of flow properties using 

the two-level kinetic level and the complete GBE for hypersonic shock structure in nitrogen with 

R-T relaxations at M = 2.4 and 10. The agreement between the two solutions is excellent at 

lower Mach number of 2.4 and is reasonable at M =10. It should be noted that a similar model is 

currently under development for V-T relaxations. These models can provide extremely efficient 
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solutions for gas flows of diatomic gases with both R-T and V-T relaxations with acceptable 

accuracy. 

-6-4-2024 

(a) Flow Properties 

o: 

(b) Density 
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Figure 12: Comparison of SW in Nitrogen with R-T Relaxations with Complete GBE and 
Two- Level R-T Model (shown by *), M =2.4 
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Figure 13: Comparison of SW in Nitrogen with R-T Relaxations with Complete GBE and 
Two-Level R-T Model (shown by *), M =10. 
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